The Structure of trans-4'-Hydroxy- N -methyl-4-stilbazolium (+)-Camphor-10-sulfonate*

By R. F. Ziolo, \dagger W. H. H. Günther, G. R. Meredith and D. J. Williams

Xerox Corporation, Webster Research Center, Webster, New York 14580, USA

and J. M. Troup
Molecular Structure Corporation, College Station, Texas 77840, USA

(Received 10 April 1981; accepted 13 July 1981)

Abstract

C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+} . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}^{-}\), (I), monoclinic, $P 2_{1}, a=8.475(1), b=28.192(3), c=9.605$ (1) \AA, $\beta=98.28(1)^{\circ}, V=2271 \AA^{3}, Z=4 ; d_{c}=1.297, d_{m}=$ $1.29 \mathrm{Mg} \mathrm{m}^{-3}$ (flotation in $\mathrm{CCl}_{4} /$ cyclohexane mixture). Final $R(F)=0.044, R_{w}=0.055$ for 3096 independent observed reflections. Two crystallographically indepen-

^[* Alternative name: (E)-4-[2-(4-hydroxyphenyl)vinyl]-1methylpyridinium (+)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptane-1methanesulfonate. \dagger To whom correspondence should be addressed.]

dent hydrogen-bonded cation-anion pairs interleave to form dimers in layers normal to [010]. In the dimer the cations are related by a pseudo inversion center and have a non-coplanar, antiparallel arrangement.

Introduction. The title compound (I) was prepared by dropwise addition of an absolute ethanol solution of (+)-camphor-10-sulfonic acid to 4'-hydroxy- N -methyl4 -stilbazolium betaine suspended in absolute ethanol. Crystals suitable for X-ray analysis were obtained from

Table 1. Positional and thermal parameters with their e.s.d.'s

	$\boldsymbol{B}_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} \boldsymbol{B}_{U} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.									
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$		x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$	
S(1)	$0 \cdot 3772$ (1)	$0 \cdot 107720$ (4)	0.4240 (1)	$4 \cdot 84$ (2)	C(17)	-0.0979 (5)	0.0863 (2)	$-0.2221(5)$	$4 \cdot 6$ (1)	
S(2)	$0 \cdot 1129$ (2) -0.10270 (5)		0.0704 (1)	$5 \cdot 35$ (3)	C(18)	-0.0203 (5)	0.0421 (2)	$-0.2311(5)$	$4 \cdot 0$ (1)	
			C(19)		$0 \cdot 1068$ (5)	0.0327 (2)	-0.1276 (5)	$4 \cdot 0$ (1)		
$\mathrm{O}(1)$	0.3645 (4)	$-0.1352(1)$		0.4092 (4)	$5 \cdot 8(1)$	C(20)	$0 \cdot 1555$ (5)	0.0635 (2)	-0.0199 (5)	4.0 (1)
O(2)	$0 \cdot 1130$ (4)	$0 \cdot 1380$ (1)	$0 \cdot 0926$ (3)	5.4 (1)	C(21)	-0.0690 (5)	0.0078 (2)	$-0.3412(5)$	$4 \cdot 5$ (1)	
O(3)	0.3595 (4)	$0 \cdot 1107$ (2)	$0 \cdot 2703$ (3)	$6 \cdot 9$ (1)	C(22)	-0.2015 (5)	0.0094 (2)	-0.4344 (5)	$4 \cdot 4$ (1)	
$\mathrm{O}(4)$	$0 \cdot 5390$ (4)	0.0973 (1)	0.4827 (4)	6.4 (1)	C(23)	-0.2483 (5)	-0.0241 (2)	-0.5479 (5)	$4 \cdot 0$ (1)	
O(5)	0.2600 (5)	0.0777 (1)	0.4719 (4)	$7 \cdot 0$ (1)	C(24)	-0.3934 (5)	-0.0193 (2)	-0.6362 (5)	$4 \cdot 2$ (1)	
O (6)	0.0575 (4)	$0 \cdot 1922$ (2)	$0 \cdot 5985$ (4)	$5 \cdot 9$ (1)	C(25)	-0.4408 (5)	-0.0500 (2)	-0.7414 (5)	$4 \cdot 3$ (1)	
O(7)	$0 \cdot 1350$ (5)	-0.1035 (2)	0.2245 (4)	$8 \cdot 3$ (1)	C(26)	-0.2103 (6)	-0.0931 (2)	-0.6856 (5)	$4 \cdot 8$ (1)	
O(8)	0.2355 (5)	-0.0755 (1)	0.0181 (5)	8.0 (1)	C(27)	$-0 \cdot 1566$ (5)	-0.0635 (2)	-0.5750 (5)	4.5 (1)	
O(9)	-0.0477 (4)	-0.0898 (1)	0.0157 (4)	$6 \cdot 8$ (1)	$\mathrm{C}(28)$	-0.4000 (6)	-0.1197 (2)	-0.8827 (6)	$5 \cdot 7$ (1)	
O(10)	-0.1872 (5)	-0.1946 (2)	-0.0443 (5)	7.8 (1)	C (29)	0.3365 (5)	$0 \cdot 1659$ (2)	0.4757 (5)	4.4 (1)	
					C(30)	$0 \cdot 3439$ (5)	$0 \cdot 1779$ (2)	0.6316 (4)	$3 \cdot 7$ (1)	
N(1)	$0 \cdot 8344$ (4)	0.0879 (1)	1.2710 (4)	$4 \cdot 0$ (1)	C(31)	0.3926 (6)	$0 \cdot 1387$ (2)	0.7436 (5)	5.1 (1)	
N(2)	-0.3491 (4)	-0.0865 (1)	-0.7662 (4)	$4 \cdot 3$ (1)	C(32)	$0 \cdot 4449$ (6)	$0 \cdot 1670$ (2)	0.8812 (5)	5.5 (1)	
					C(33)	$0 \cdot 4073$ (6)	0.2176 (2)	0.8377 (5)	$5 \cdot 2$ (1)	
C(1)	0.4025 (5)	$-0 \cdot 1033$ (2)	$0 \cdot 5160$ (5)	$4 \cdot 5$ (1)	C(34)	0.4546 (6)	$0 \cdot 2198$ (2)	0.6874 (5)	$4 \cdot 5$ (1)	
C(2)	0.5306 (6)	-0.1144 (2)	0.6181 (5)	$4 \cdot 9$ (1)	C(35)	0.4111 (8)	$0 \cdot 2658$ (2)	0.6088 (6)	$6 \cdot 5$ (1)	
C(3)	$0 \cdot 5775$ (5)	-0.0833 (2)	0.7274 (5)	$4 \cdot 5$ (1)	C(36)	0.6315 (6)	$0 \cdot 2098$ (2)	0.6822 (6)	$6 \cdot 5$ (1)	
C(4)	0.5000 (5)	-0.0404 (2)	0.7374 (5)	$3 \cdot 8$ (1)	C(37)	$0 \cdot 1877$ (5)	$0 \cdot 1962$ (2)	0.6681 (5)	4.4 (1)	
C(5)	$0 \cdot 3721$ (5)	-0.0300 (2)	0.6351 (5)	$4 \cdot 2$ (1)	C(38)	0.2250 (7)	0.2212 (2)	$0 \cdot 8088$ (6)	$5 \cdot 7$ (1)	
C(6)	$0 \cdot 3220$ (5)	-0.0611 (2)	$0 \cdot 5249$ (5)	$4 \cdot 4$ (1)	C(39)	$0 \cdot 1403$ (6)	-0.1636 (6)	0.0265 (5)	$5 \cdot 2$ (1)	
C(7)	$0 \cdot 5522$ (5)	-0.0061 (2)	0.8487 (5)	$4 \cdot 2$ (1)	C(40)	0.0721 (5)	-0.1794 (2)	-0.1212 (5)	$3 \cdot 8$ (1)	
C(8)	0.6834 (5)	-0.0082 (2)	0.9427 (5)	$4 \cdot 1$ (1)	C(41)	0.0585 (7)	-0.1439 (2)	-0.2444 (6)	$6 \cdot 0$ (1)	
C(9)	0.7335 (5)	0.0257 (2)	1.0526 (4)	$3 \cdot 8$ (1)	C(42)	0.0376 (9)	-0.1751 (3)	-0.3771 (6)	$8 \cdot 4$ (2)	
C(10)	0.8771 (5)	0.0192 (2)	$1 \cdot 1398$ (5)	4.0 (1)	C(43)	0.0352 (8)	-0.2247 (2)	-0.3149 (6)	$6 \cdot 7$ (2)	
C(11)	0.9268 (5)	0.0503 (2)	1.2469 (5)	4.0 (1)	C(44)	$0 \cdot 1552$ (6)	-0.2219 (2)	-0.1806 (5)	5.1 (1)	
C(12)	$0 \cdot 6926$ (5)	0.0952 (2)	$1 \cdot 1872$ (5)	$4 \cdot 6$ (1)	C(45)	$0 \cdot 1596$ (7)	-0.2670 (2)	-0.0904 (6)	$6 \cdot 3$ (1)	
C(13)	0.6415 (5)	0.0654 (2)	1.0812 (5)	$4 \cdot 5$ (1)	C(46)	$0 \cdot 3249$ (8)	-0.2113 (3)	-0.2088 (8)	$9 \cdot 0$ (2)	
C(14)	0.8893 (6)	0.1217 (2)	1.3844 (5)	$5 \cdot 1$ (1)	C(47)	-0.0957 (6)	-0.2000 (2)	-0.1284 (6)	$5 \cdot 3$ (1)	
C(15)	0.0758 (5)	$0 \cdot 1065$ (2)	-0.0133 (4)	$3 \cdot 8$ (1)	C(48)	-0.1219 (8)	-0.2298 (2)	-0.2586 (7)	$7 \cdot 4$ (2)	

a $10: 1$ volume mixture of acetone and ethanol. Unit-cell parameters were obtained from a leastsquares analysis of 25 reflections. The observed systematic extinctions were $0 k 0, k \neq 2 n$. Since the compound is optically active, space group $P 2_{1}$ was chosen and was subsequently confirmed by refinement. Intensity data were collected at $298 \pm 1 \mathrm{~K}$ on an Enraf-Nonius CAD-4 automatic diffractometer using graphite-monochromatized $\mathrm{Cu} K \alpha$ radiation. The orange crystal used measured $0.25 \times 0.25 \times 0.25 \mathrm{~mm}$ and was mounted in a glass capillary. The total number of reflections collected was $6299 ; 4077$ were independent. Intensities and standard deviations of intensities were calculated as $I=S(C-R B)$ and $\sigma(I)^{2}=S^{2}(C+$ $\left.R^{2} B\right)+(p I)^{2}$ where $S=$ scan rate, $C=$ total integrated peak count, $R=$ scan time/background counting time, $B=$ total background count and $p=0.05$. Lorentz and polarization corrections were applied to the data. A correction for extinction was applied (Zachariasen, 1963), and refined to a value of 3.50×10^{-6}. No absorption correction $\left[\mu(\mathrm{Cu} K \alpha)=1.53 \mathrm{~mm}^{-1}\right]$ was made.

The structure was solved by direct methods and was refined by the full-matrix least-squares method using 3096 reflections having $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$. The function $\sum_{w} w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized where w is $4 F_{o}^{2} /$ $\sigma^{2}\left(F_{o}^{2}\right)$. The hydroxyl H atoms were refined isotropically. All other H atoms were included in their calculated (idealized) positions with $B=6.0 \AA^{2}$. The rotational conformations of the methyl groups were calculated so that they agreed with the locations found in a prior difference Fourier map. Calculations were performed on a PDP 11/45 using the Enraf-Nonius structure determination package (Frenz, 1978). Atomic scatering factors for all atoms were those of Cromer \& Waber (1974) and were corrected for both the real and imaginary parts of anomalous dispersion (Cromer \& Liberman, 1970). The final agreement factors are $R_{1}=$ $\sum\left|\left|F_{o}\right|-\left|F_{F}\right| / / \sum\right| F_{o} \mid=0.044$ and $R_{2}=\left[\sum w\left(\left|F_{o}\right|-\right.\right.$ $\left.\left.\left|F_{c}\right|\right)^{o} / \sum w F_{o}^{2}\right]^{1 / 2}=0.055$. The anion has the expected $1(S)$ configuration of $(+)$-camphor (Allen \& Rogers, 1971). (Refinement of the other enantiomer yielded $R_{1}=0.045$ and $R_{2}=0.056$.) The final positional parameters of the non-H atoms are given in Table 1.*

Discussion. The structure of (I) was determined as part of a larger effort to study the structure-property relationships that govern the optical non-linearities of organic crystals.
The structure consists of two crystallographically independent hydrogen-bonded cation-anion pairs

[^1](Figs. 1 and 2) interleaved to form dimers in layers normal to [010]. The molecular packing is shown in Fig. 3. All interatomic distances and angles in the ions appear normal. The cations have a twisted conformation with the dihedral angle between the benzene and pyridine rings being $11(1)$ and $13(1)^{\circ}$ for the $\mathrm{N}(1)$ and $\mathrm{N}(2)$ cations respectively.
Hydrogen bonding occurs through the hydroxyl groups of the cations and the sulfonated O atoms. The $\mathrm{O}(1)-\mathrm{O}(7)$ and $\mathrm{O}(2)-\mathrm{O}(3)$ distances are 2.595 (6) and $2.616(6) \AA$, while the $\mathrm{O}(1)-\mathrm{H}(1)-\mathrm{O}(7)$ and

Fig. 1. Perspective views, atom labelling scheme, distances (\AA) and angles $\left({ }^{\circ}\right)$ in the two crystallographically independent 4^{\prime} -hydroxy- N -methyl-4-stilbazolium cations. The upper numbers refer to the labelled cation while the lower numbers refer to the corresponding values in the other cation.

Fig. 2. Perspective views, atom labelling scheme, distances ($\dot{\mathrm{A}}$) and angles $\left({ }^{\circ}\right)$ in the two crystallographically independent $(+)$ -camphor-10-sulfonate anions. The upper numbers refer to the labelled anion while the lower numbers refer to the corresponding values in the other anion.

$$
\begin{equation*}
\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+} . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}^{-} \tag{343}
\end{equation*}
$$

Fig. 3. Stereoscopic packing view of (I).
$\mathrm{O}(2)-\mathrm{H}(15)-\mathrm{O}(3)$ angles are $161(7)$ and $171(4)^{\circ}$ respectively; $\mathrm{H}(1)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ is $179(1)^{\circ}$ and $\mathrm{H}(15)-\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(16)$ is $-173(1)^{\circ}$. Exclusive of these $\mathrm{O}-\mathrm{O}$ contacts, the shortest interionic contact is $\mathrm{C}(10)-\mathrm{C}(20)(1+x, y, 1+z)$ in the dimer at 3.243 (7) \AA.

In the dimer the cations are related by a pseudo inversion center and have an antiparallel arrangement. The angle between the $\mathrm{N}(1)-\mathrm{C}(1)$ and $\mathrm{N}(2)-\mathrm{C}(15)$ vectors is $179.5(5)^{\circ}$. This arrangement of the cations precludes any significant contribution of the species to
the second-order non-linear electric-dipole susceptibility which we have determined for (I) for optical second-harmonic generation to be $<10^{-8}$ e.s.u.
The independent anions have slightly different conformations, as seen in the torsion angles $\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{S}(1): \quad 1 \cdot 8^{\circ}, \quad \mathrm{C}(41)-\mathrm{C}(40)-$ $\mathrm{C}(39)-\mathrm{S}(2): \quad 29.6^{\circ}, \quad \mathrm{C}(30)-\mathrm{C}(29)-\mathrm{S}(1)-\mathrm{O}(3):$ -179.5° and $\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{S}(2)-\mathrm{O}(7): 159.7^{\circ}$ (e.s.d.'s $<1.0^{\circ}$). Rotations take place about the $\mathrm{C}(29,39)-\mathrm{C}(30,40)$ and $\mathrm{C}(29,39)-\mathrm{S}(1,2)$ bonds so as to minimize SO_{3}^{-}oxygen contacts with the carbonyl and bridgehead methyl groups and to stagger the non-hydrogen-bonded $\mathrm{O}-\mathrm{S}-\mathrm{O}$ moieties over the $C(37,47)$ positions.

References

Allen, F. H. \& Rogers, D. (1971). J. Chem. Soc. B, pp. 632-636.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2-2B. Birmingham: Kynoch Press.
Frenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1 144.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom positional parameters and least-squares planes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36298 (28 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

